

4-pole double armature relay with forcibly guided contact set according to IEC 61810-3

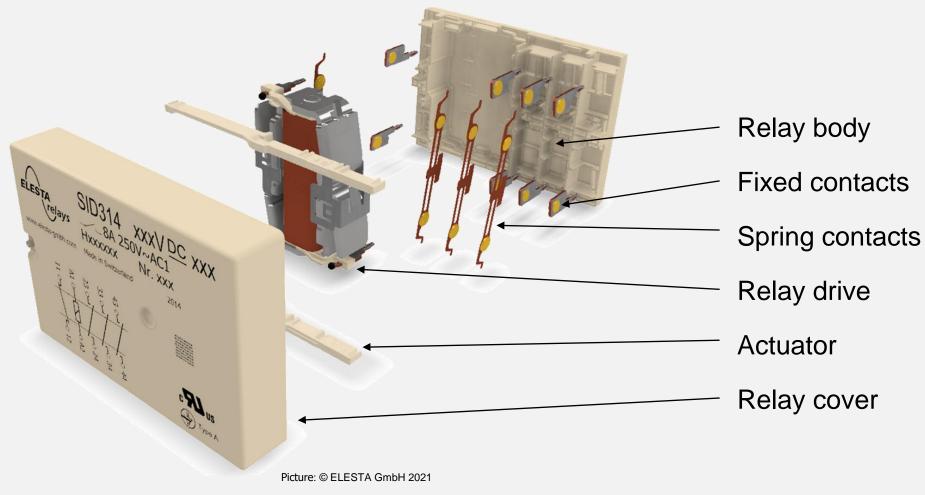
Product Launch November 2021 ELESTA GmbH


Relay series SID Overview

- Introduction
- Structure
- Double armature
- Insulation coordination
- Advantages
- Assembly
- Functional safety
- Summary

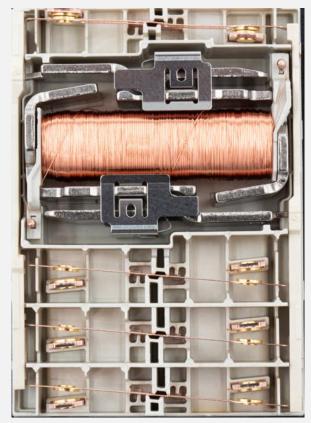
Relay series SID Introduction

Why is the SID relay an innovation in the field of relays with forcibly guided contact set according to IEC 61810-3?



Picture: © ELESTA GmbH 2021

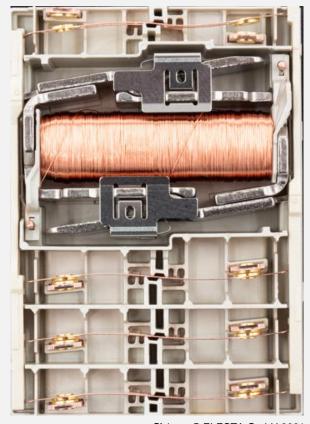
- A new approach for the realization of 2-channel safety controllers is possible
- The relays have two independent contact sets
- All specifications of forcible guiding according to IEC 61810-3 type A are fulfilled
- The relay drive has two independently acting solenoid armatures
- Environmentally friendly design


Relay series SID Structure - mechanical 3D explosion drawing

Relay series SID Structure - SID312 On - Off

SID Basic position (coil not energised)

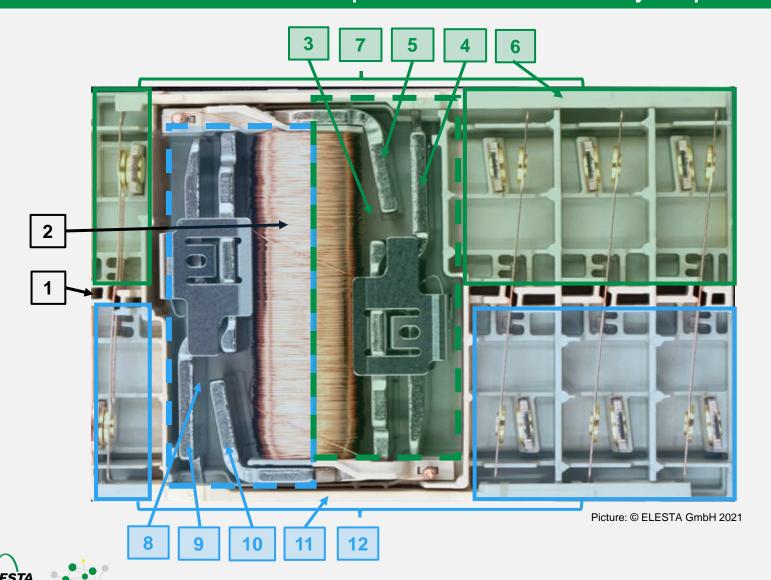
Picture: © ELESTA GmbH 2021


In default position

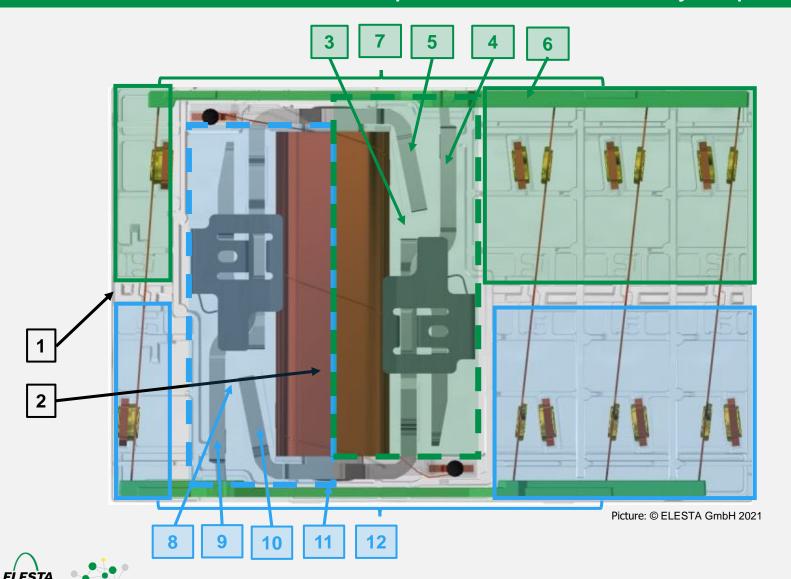
- Armatures do not rest on the yoke
- NC-contacts are closed
- NO-contacts are open

In working position

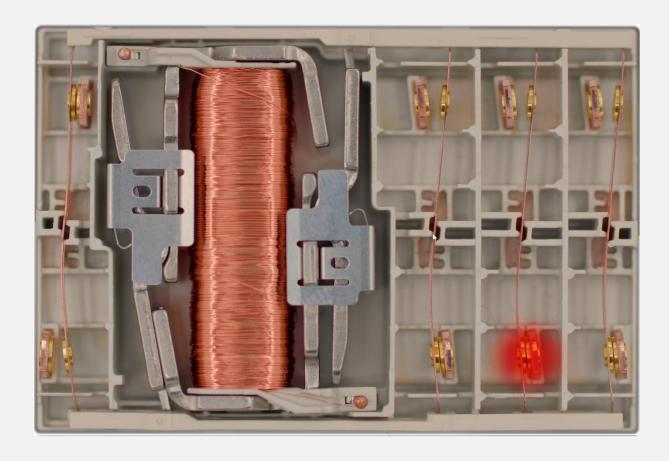
- Armatures lie against the yoke
- NC-contacts are opened
- NO-contacts are closed


SID Working position (coil energized)

Picture: © ELESTA GmbH 2021



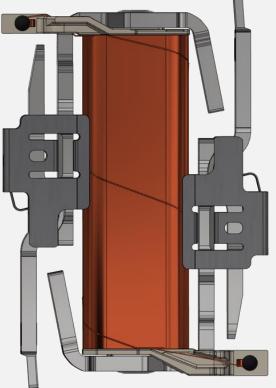
Structure - SID312 basic position without relay cap


- 1. Base body
- 2. Coil
- 3. Magnetic circuit A
- 4. Armature A
- 5. Yoke A
- 6. Actuator A
- 7. Contact set A
- 8. Magnetic circuit B
- 9. Armature B
- 10. Yoke B
- 11. Actuator B
- 12. Contact set B

Structure - SID312 neutral position without relay cap armature colored

- 1. Base body
- 2. Coil
- 3. Magnetic circuit A
- 4. Armature A
- 5. Yoke A
- 6. Actuator A
- 7. Contact set A
- 8. Magnetic circuit B
- 9. Armature B
- 10. Yoke B
- 11. Actuator B
- 12. Contact set B

Structure - SID312 behavior at failure to open



- 1. Relay in neutral state
- 2. Coil energized
 - 1NO of contact set A is welded.
- 3. Coil switched off
 - 1NO of contact set A is blocked
 - Fall back of NC at contact set A is blocked
 - Contact set B falls back to default position
- 4. Relay in neutral state
- 5. Coil energized
 - 1NO of contact set B is welded
- 6. Coil switched off
 - 1NO of contact set B is blocked
 - Fall back of NC at contact set B is blocked
 - Contact set A falls back to default position

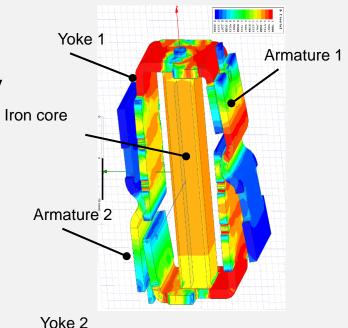
Double armature - special features for relays according to IEC 61810-3

Relay drive Relay series SID4

Picture: © ELESTA GmbH 2021

Requirements for the double armature and contact set are:

- The contact sets are independently driven
- Each of the armatures performs comparably to a conventional monostable relay
- The response and release times behave to each other like those of two independently operating relays to each other
- Design specifications for relays with forcibly guided contacts, require higher magnetic force compared to "standard relays" The reasons are the following:
 - Opening width in the disturbed state (failure to open) of the counterfunctional contacts of 0.5 mm (single contact)
 - Relay release at 10% of the nominal coil voltage


Double armature - structure and magnetic flux modeling

Mechanical structure Relay drive SID Coil supply pin **Bobbin** Winding Armature spring Armature • Yoke Iron core Coil supply pin (not visible)

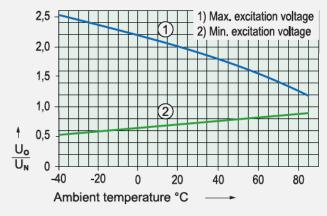
Relay drive in detail

- Bobbin with one winding excites both magnetic circuits
- Armatures are driven independently of each other by the magnetic flux
- Magnetic flux of both magnetic circuits pass through the common coil core
 - Armatures close and open independently

Magnetic flux modeling Relay drive SID

View in motion
Armature 1 is resting against yoke 1,
Armature 2 moves toward yoke 2

Picture: © ELESTA GmbH 2021



Relay series SID Double anchor - working range

Coil data at 20 °C				
Nominal power (typ.) Holding power (typ.)			0,82 W 0,25 W	
Coil limit temperature			120 °C	
Nominal voltage (VDC)	Min. Pick-up voltage (VDC)	Min. Drop-out voltage (VDC)	Nominal current (mA)	Resistance (Ohm)
5,0	3,5	0,5	161	31 (1 ± 10 %)
12,0	8,4	1,2	69	173 (1 ± 10 %)
18,0	12,6	1,8	46	396 (1 ± 10 %)
24,0	16,8	2,4	33	736 (1 ± 10 %)
48,0	33,6	4,8	16	2990 (1 ± 10 %)
60,0	42,0	6,0	13	4570 (1 ± 10 %)
110,0	77,0	11,0	8	14660 (1 ± 10 %)

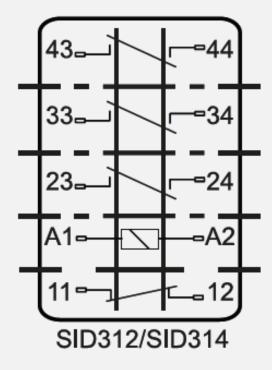
Picture: © ELESTA GmbH 2021

Excitation voltage range

Test conditions:

- Graph 1: Contact current 5 A MAX
- Graph 2: without previous operation
- Free-standing relay on PCB
- Duty cycle 100%

Picture: © ELESTA GmbH 2021


Relay drive performance data

- Wide excitation voltage range (coil voltage range)
- Example: At nominal voltage 24V
 DC and ambient temperature of 20°C the operating range is 16.8V
 DC to 48V DC
- Customized coil voltages possible

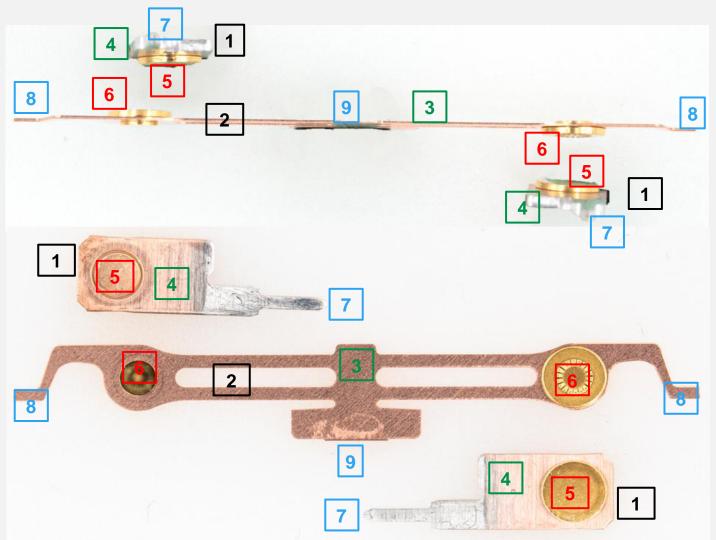
Relay series SID Isolation coordination

Circuit diagram (top view)

Picture: © ELESTA GmbH 2021

Insulation data	
Rated insulation voltage (IEC 60664-1)	250 VAC
Basic insulation	
- Air and creepage distance (min.)	4 mm
- Test voltage	2500 V _{rms} / 1 min
Double or reinforced insulation	
 Air and creepage distance (min.) 	5,5 mm
- Test voltage	4000 V _{rms} / 1 min
Open contact: Test voltage*	1500 V _{rms} / 1 min
Creepage resistance	CTI 250
Pollution degree	2
Overvoltage category	III
Insulation resistance (min.)	100 MΩ
- Test voltage	500 VDC
* Initial value	Picture: © FLESTA G

- Basic insulation NC contacts 2500 Vrms.
- Double or reinforced insulation NO contacts 4000 Vrms.
- Test voltage open contacts 1500 Vrms.



Picture: © ELESTA GmbH 2021

Switching contacts - contact springs and fixed contacts

1NO contact of contact set A and B (functional top view)

1NO contact of contact set A and B (disassembled)

- 1. Fixed contact
- 2. Spring contact
- 3. Contact spring
- 4. Fixed contact carrier
- Contact rivet: single contact
- 6. Contact rivet: lobe crown contact
- 7. Solder connection
- 8. Actuator mounting
- 9. Contact spring mounting Contact set A to B

Switching contacts - contact chambers / contact sets

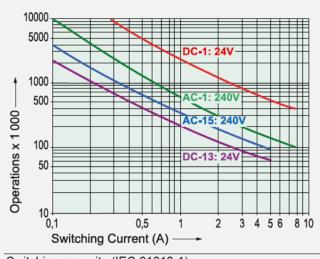
Feedback contacts NC

Load contacts NO

- Spatial separation between feedback circuits and load circuits
- Separation between contact chambers contact set A to contact set B
- Shielding to armature A and armature B
- Accommodation of the common contact spring of contacts set A and contact set B

Relay series SID Switching contacts - contact loads

Contact data	
Contact material	AgSnO ₂ + 0,2,, 0,4 μm Au
Type of contact	Single contact with notched crown
Rated switching power	2000 VA
250 V / 8 A / AC-1 (max	.)
Electr. life time (0,1 Hz,	rel. duty cycle 10%) 100 000
Inrush current	30 A for 20 ms
Switching voltage range	5,, 250 V DC / AC
Switching current range	* 3 mA,, 8 A
Switching power range*	40 mW,, 2000 W (VA)
Contact resistance as n	ew (max.) 100 mΩ
Short circuit resistance	of NO contacts** 1000 A
with pre-fuse	SCPD 10 A gG / gL (fuse)
Short circuit resistance	of NC contacts** 1 000 A
with pre-fuse	SCPD 6 A gG / gL (fuse)

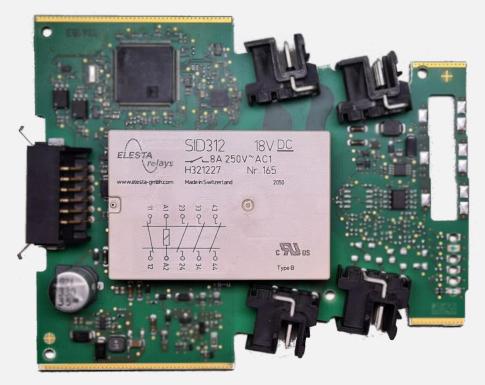

^{*} Reference values ** Prospective short-circuit current

Picture: © ELESTA GmbH 2021

Switching load ranges

- Extremely wide load range from 3mA to 8A
- Max. Switching current for 2 load contacts each 8A
- Max. Switching current for 3 load contacts each 6A
- Inrush currents up to 30A for 20ms
- Customized coil voltages possible
- High switching reliability due to lobe crown contact for small switching loads

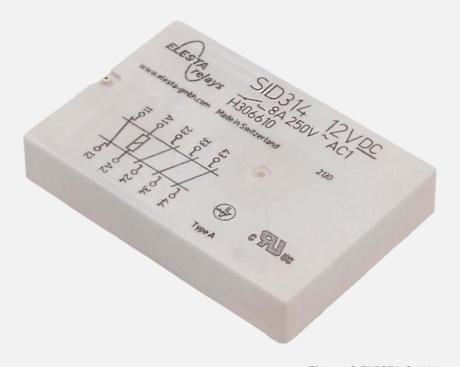
Electrical life (NO contacts)


	P:
3 contacts	6 A MAX
1 or 2 contacts	8 A MAX
Continuous current per contact a	t load of:
Switching capacity (UL 508)	B300, R300
	L/R = 40ms
DC-13:	24 V / 5 A / 0,1 Hz MAX
DC-1:	24 V / 8 A MAX
AC-15:	240 V / 5 A MAX
AC-1:	240 V / 8 A MAX
Switching capacity (IEC 61810-1)

Picture: © ELESTA GmbH 2021

Relay series SID Advantages - energy saving

Energy saving with SID 4-pole compared to 2 SIF 4-pole


Picture: © ELESTA GmbH 2021

Energy saving with SID 4-pole

- Coil power rating per SIF 4-pole ~ 700 mW
- Coil nominal power with 2 SIF 4-pole ~ 1400 mW
- Coil power with 1 SID 4-pole ~ 820 mW
- Savings in nominal coil power 580 mW (41%)
- Holding power per SIF 4-pole ~ 210 mW
- Holding power with 2 SIF 4-pole ~ 420 mW
- Holding power with 1 SID 4-pole ~ 250 mW
- Saving holding power 170 mW (41%)

Relay series SID Advantages - material saving

Picture: © ELESTA GmbH 2021

SID312 weight reduction compared to 2 SIF312

- Weight 2 x SIF 312 ~ 38.6 g
- Weight 1 x SID 312 ~ 33.6 g
- Weight reduction 6.4 g
- ~ 13% weight reduction

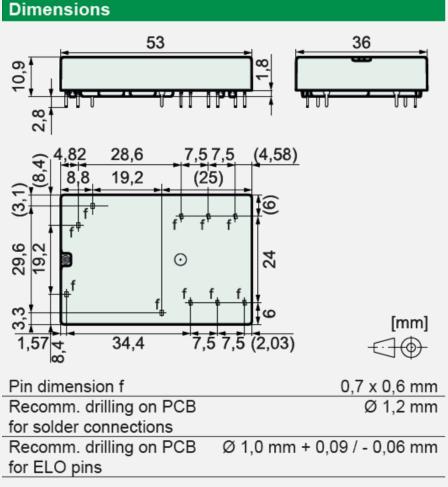
The weight reduction is composed as follows:

- minus ~ 39% plastic saving
- plus ~ 17% magnetic soft iron rFe

Relay series SID Advantages - space requirement

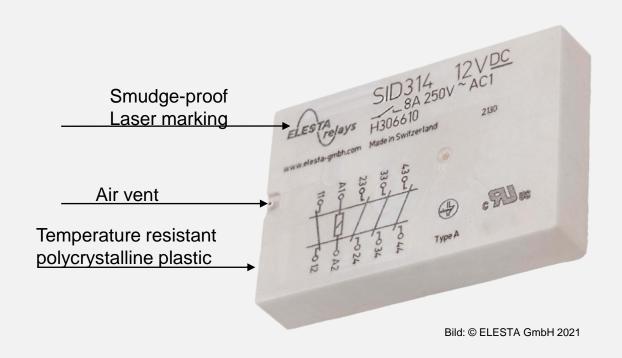
Setup with 2 relays SIF 312

Space requirement


- Space requirement 2 x SIF 312 with mounting distance
 - ~ 2452 mm²
- Space requirement 1 x SID 312 with mounting distance
 - ~ 1908 mm²
- Space saving
 - $\sim 544 \text{ mm}^2$
- 22% Space reduction!

Setup with 1 relay SID 312

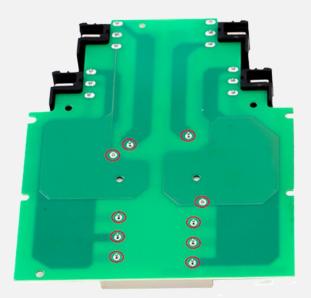
Relay series SID Advantages - Compact design



Picture: © ELESTA GmbH 2021

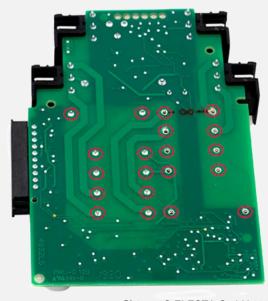
- Horizontal contact set
- Robust construction
- Large heat convection surfaces
- Suitable for 17.5 mm module housings and rack-mountable boards
- Base plate with molded connection pins

Advantages - Compact design


Features

- Relay with forcibly guided contacts according to IEC 61810-3
- Application type A
- Protective separation (see insulation data)
- Suitable for print mounting
 - With solder connections
 - With ELO pins for press-fit technology
- Double armature relay with 2 contacts in series per path
- Dual-channel capability with only one relay possible
- SMD placement under the relay possible
- Height only 10,9 mm
- Contact assembly
 SID312/SID314: 3 NO + 1 NC

Bild: © ELESTA GmbH 2021



Relay series SID Assembly - advantages layout

Picture: © ELESTA GmbH 2021

10 drill holes for SID312

Picture: © ELESTA GmbH 2021

20 drill holes for 2 pieces SIF312

Layout Benefit

- Reduction of drilling from 20 holes to 10 holes
- Savings of 50% of the drillings
- Less layout effort
- Higher design reliability of the board

Advantages - component placement under the housing

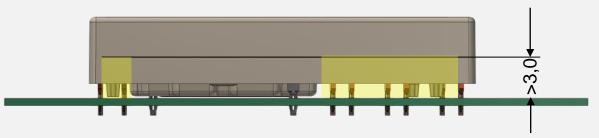
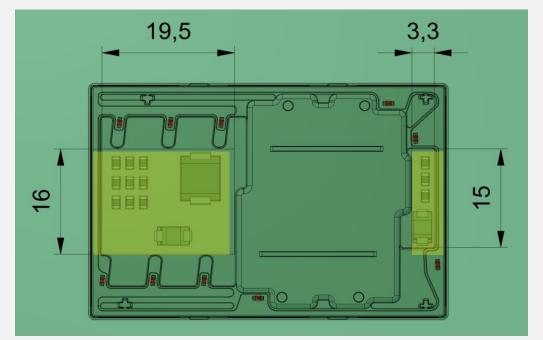
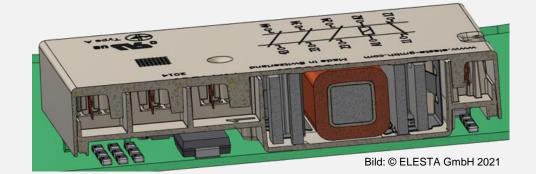
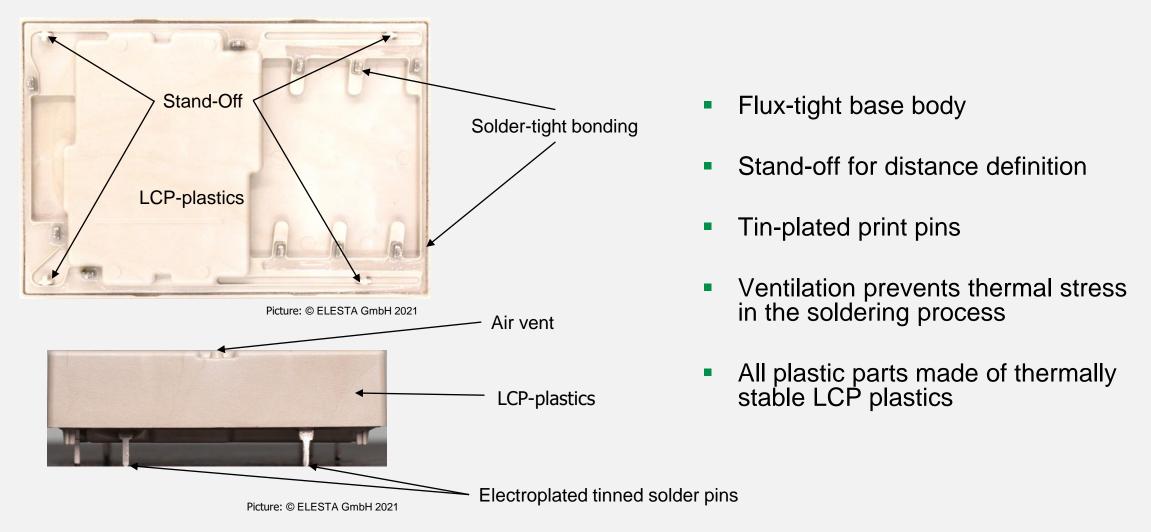
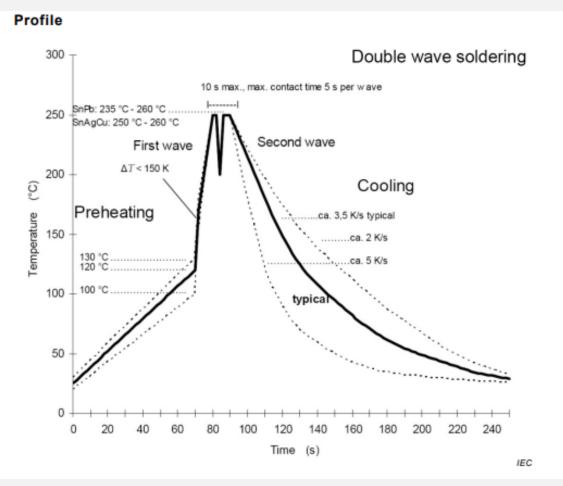


Bild: © ELESTA GmbH 2021


Bild: © ELESTA GmbH 2021

- Additional placement area of 360 mm² for SMD components
- Additional placement area of components up to approx. 3 mm height



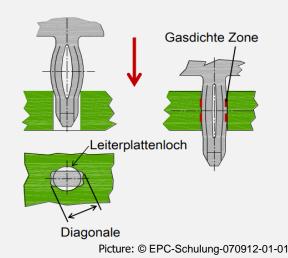
Assembly - Wave soldering, selective soldering, manual soldering

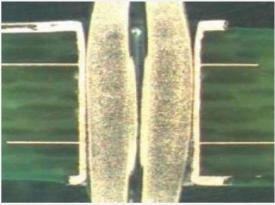
Assembly - Wave soldering, selective soldering, manual soldering

- SID relays are suitable for wave soldering, selective soldering and hand soldering
- Due to their high heat capacity, relays should be well preheated before the actual soldering process
- Overheating during preheating or in the soldering process can damage the relay

Relay series SID Assembly - ELOPIN - Introduction

ELOPIN in relay base body




Picture: © ELESTA GmbH 2021

- ELOPIN is a patented press-fit pin that connects the SID relay to the board instead of a solder pin.
- This eliminates the soldering process in the manufacture of the control board

Assembly - ELOPIN (press-fit technology) - Introduction

Picture: © EPC-Schulung-070912-01-01

Elastic press-fit pin for solderless electrical connections

The concept

- The press-fit contact has a larger diagonal than the PCB hole
- High contact forces are created at the deformed points, resulting in a gas-tight zone and a low-resistance electrical connection
- Plastic and elastic deformation occurs

Advantages of press-fit technology

- Cost-effective double-sided assembly of printed circuit boards
- No problems due to solder bridges, flux residues, bad solder joints and thermal stress
- No environmentally harmful substances.
- Use with lead-free and halogen-free printed circuit boards

Profitability

- Usually cheaper compared to soldering technology
- No expensive plastics for SMT because of the high temperatures, especially with leadfree tin solders
- No quality problems with SMT solder joints due to deflection and conductor lift-off

Relay series SID Assembly - ELOPIN (press-fit technology) - Introduction

Reliability Comparison of connection technologies

Ve	erfahren	Leiterquerschnitt in mm²	Ausfallrate λ_{ref} in FIT ¹⁾	Hinweise: Normen/Richtlinien
Löten	manuell		0,5	IPC 610 ²), Klasse 2
	maschinell	-	0,03	
Wirebonden für Hybridschaltungen Al			0,1	28 µm / Wetch – Bond
	Au		0,1	25 µm / Ball – Bond
Wickeln		0,05 bis 0,5	0,002	DIN EN 60352 – 1 /
				IEC 60352 – 1 CORR1
Crimpen	manuell	0,05 bis 300	0,25	DIN EN 60352 – 2 /
•	maschinell			IEC 60352 – 2 A 1+2
Klammern		0,1 bis 0,5	0,02	DIN 41611 – 4
Einpressen		0,3 bis 2	0,005	IEC 60352 - 5
Schneid-Klemmen		0,05 bis 1	0,25	IEC 60352 - 3 / IEC 60352 - 4
Schrauben		0,5 bis 16	0,5	DIN EN 60999 – 1
Klemmen (Federkr	raft)	0,5 bis 16	0,5	DIN EN 60999 – 1

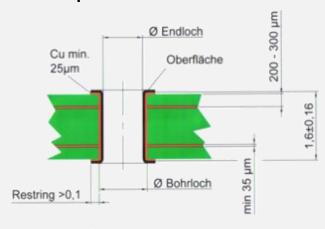
^{1) 1} FIT = 1 x 10⁻⁹ 1/h; (Ein Ausfall pro 10⁹ Bauelementestunden)

Tabelle 3

Ausfallraten verschiedener Verbindungstechnologien Siemens Norm SN 29500-5 / Edition 2004-06 Part 5

Picture: © EPC-Schulung-070912-01-01

ELOPIN reliability evaluation


- After wire wrap, the lowest failure rate
- Gas-tight connection without bow waves, nozzle effect or planing (corrosion resistance)
- High elasticity of the connection in case of shock, vibration and temperature fluctuations
- Suitable for "heavy components" due to high holding forces
- Low press-in forces
- ELOPIN is temperature stable -40°C to +150°C

²⁾ Annahmebedingungen für gedruckte Schaltungen

Assembly - ELOPIN (press-fit technology) - printed circuit boards

Requirements drill hole

Leiterplatte: 4-lagig Material: FR4 HTG 150°C Breite der Anbindung von Leiterbahnen an die Durchkontaktierung von Einpresslöchern in Innenlagen min 150 µm

Die Bohrlochdurchmesser dürfen nicht geändert werden. Der Toleranzausgleich ist über die Cu- und/oder Sn – Schichtdicke zu erfolgen.

Picture: © 18.03.2010 TBS Sorig / LP-EPC-Schulung-180310-01-02

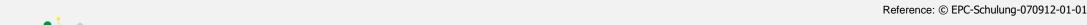
Characteristic values for printed circuit board design for ELOPIN 06-10

ELOPIN 06-10	Oberfläche HAL	Oberfläche chem Sn
Bohrloch	1,15±0,025	1,15±0,025
Bohrloch, (Praxis)	≈1,13	≈1,13
Cu Schicht	min 25μm	min 25μm
Oberfläche	HAL	chem Sn
Endloch Kleinstm.	0,94-0,985	1,0-1,03
Endloch Größtm.	1,045-1,09	1,06-1,09
Endloch Nennm.	1	1

Reference: © EPC-Schulung-070912-01-01

Relay series SID Assembly - ELOPIN (press-fit technology) - Press-fitting

Push-in and push-out force for 1 piece SID 314


Picture: © ELESTA GmbH 2021

- 10 ELOPIN per SID 314
- Press-in force, typically 650 N
- Press-in force max. per SID 314 800 N

Characteristic values for press-in force per ELOPIN 06-10

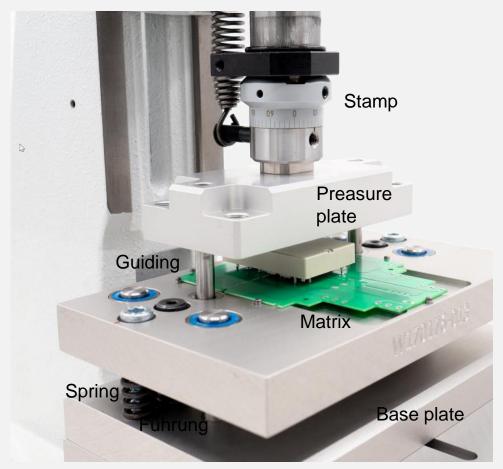
EloPin	06-10
Einpresskraft, max	100 N
Einpresskraft, typisch (Mittelwert)*	65 N
Ausdrückkraft, min	30 N
Ausdrückkraft, typisch (Mittelwert)*	60 N
Durchgangswiderstand, max	1 mΩ
Durchgangswiderstand, typisch (Mittelwert)	0,01 mΩ
Strombelastbarkeit	≈8 A

Die Werte werden insbesondere durch die Oberflächenbeschichtung der Leiterplatte (z.B. HAL; chem Sn; Ag; NiAu) und/oder der Einpresszone (Sn; Ag) beeinflusst. Bei den gezeigten Angaben ist die Einpresszone Sn und die Leiterplattenlochung chem Sn beschichtet.

Relay series SID Press-in ELOPIN - Features

Picture: © ELESTA GmbH 2021

ELOPIN Connections


- Highly effective
- Cost-effective
- Easy handling
- For small and large series
- Stress-free for board and components
- Resource-saving
- Energy-saving

Relay series SID Mounting ELOPIN - Press-in - What must be observed?

Picture: © ELESTA GmbH 2021

Please note:

- Forming plate / punch for plane force transmission
- Guided die with recess or pins for positional fixing of the blank
- Spring-loaded die or base plate for pressure force compensation and compensation of position tolerances during press-fitting

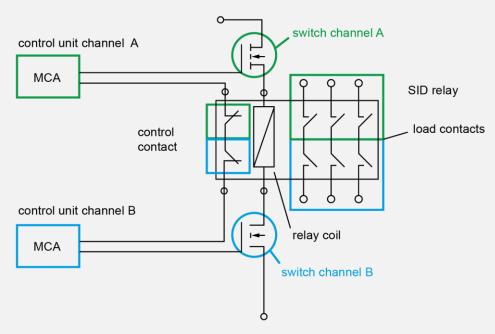
Relay series SID Functional safety - Achievable safety level

The safety levels to be achieved depend on the architecture of the respective control of the safety relay! The following information indicates the safety levels that can be achieved with correct integration.

Relays with forcibly guided contacts are basic components and do not represent a safety component, e.g., in the sense of the Machinery Directive.

Relays of the SID series can in principle be used for the realization of 2-channel safety controls.

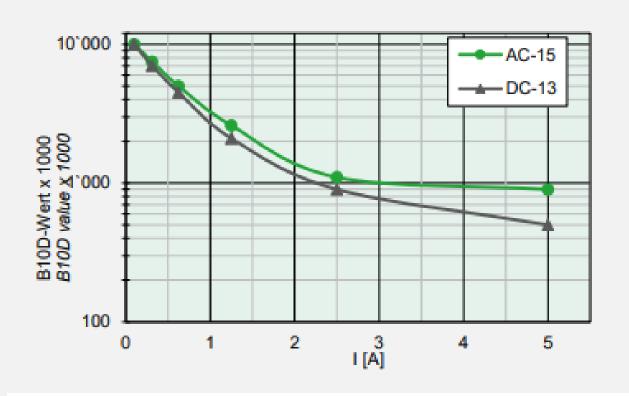
The two independent contact sets are driven by a magnetic circuit with a relay coil and two independently acting armatures. For use in 2-channel safety control systems, the relay coil (relay drive) must usually be monitored on a 2-channel basis.


The achievable safety levels are:

- According to ISO / EN 13849-1 PL "e" Cat. 4
- According to IEC / EN 62061 SIL cl3

Relay series SID Functional safety - 2-channel control

Example of 2-channel control of double armature relay SID 4-pole


Picture: © ELESTA GmbH 2021

- Two-channel control via channel A and channel B
- The control takes place via the common coil
- The armatures attract individually
- It is not defined which of the armatures pulls in or drops out first
- The pick-up delay or drop-out delay between armature A and armature B is not defined
- The coil control can be checked per channel
- The contact sets behave independently of each other Type A according to IEC 61810-3
- In case of opening failure of a contact from contact set A signals to channel A and channel B remains undisturbed (exclusion of common cause faults)

Functional safety - B10_D values according to IEC 61810-2-1 for SID 4-pole

- > B10_D-Values for AC-15 /230 V AC / 0,1 A to 5 A
- B10_D-Values for DC-13 24 V DC / L/R 40 ms / 0,1 A to 5A

B10_D-Wert nach IEC 61810-2-1 B10_D value according to IEC 61810-2-1 Baureihe SID 4 Series SID 4

	AC-15 (230 VAC)	DC-13 (24 VDC)
I [A]	B10D-Wert	B10D-Wert
	B10D value	B10D value
5,00	900 000	500 000
2,50	1 100 000	900 000
1,25	2 600 000	2 100 000
0,63	5 000 000	4 500 000
0,31	7 500 000	7 000 000
0,10	10 000 000	10 000 000

Picture: © ELESTA GmbH 2021

Relay series SID Summary

Space requirement / weight

- Weight 2 x SIF 4-pole ~ 40 g
- Weight 1 x SID 4-pole ~ 33.6 g
- Weight reduction 6.4 g
- 16% Weight reduction
- Area requirement 2 x SIF 4-pole with mounting distance ~ 2452 mm²
- Area requirement 1 x SID 4-pole with mounting distance ~ 1908 mm²
- Area saving ~ 544 mm²
- 22% area reduction!

1 SID relay can replace 2 conventional relays, energy efficient, resource saving, higher reliability, lower cost

Energy saving

- Coil power per SIF 4-pole ~ 700 mW
- Holding power per SIF 4-pole ~ 210 mW
- Coil power at 2 SIF 4-pole ~ 1400 mW
- Coil power at 1 SID 4-pole ~ 820 mW
- Saving coil power 580 mW (41%)
- Holding power per SIF 4-pole
 ~ 210 mW
- Holding power with 2 SIF 4-pole~ 420 mW
- Holding power with 1 SID 4-pole
 ~ 250 mW
- Saving holding power 170 mW (41%)

Board layout

- Reduction of the number of holes from 20 to 10
- Savings of 50% of the drilling
- Additional placement area of 360 mm² for SMD components up to approx. 3 mm height under the SID 4-pole
- Less layout effort
- Higher design reliability
- Lower board costs
- Solderless assembly with ELOPIN Press-Fit technology

Customer Service

Jürgen Steinhäuser Leitung Vertrieb und Marketing Vertrieb International j.steinhaeuser@elest-gmbh.com

Matthias Meyer
Markt Deutschland
m.meyer@elesta-gmbh.com

Yvette Kihodu Markt Deutschland y.kihodu@elesta-gmbh.com

Michael Herrmann Markt Schweiz m.herrmann@elesta-gmbh.com

ELESTA GmbH
Heuteilstrasse 18
CH 7310 Bad Ragaz

Phone: +49 81 30354-00

Email: admin@elesta-gmbh.com
Web-page: www.elesta-gmbh.com

